Yang dimaksud dengan masalah praktis adalah masalah yang mungkin timbul dalam kehidupan sehari-hari. Masalah-masalah yang demikian jarang mempunyai titik-titik singular, untuk masalah-masalah ini nilai maksimum dan minimum biasanya terjadi pada titik stasioner, walaupun titik-titik ujung harus diperiksa.
Berikut adalah dua contoh penggunann kalkulus dalam masalah sehari-hari.
1. Kotak persegi panjang dibuat dari selembar papan, panjangnya 24 inci dan lebarnya 9 inci, dengan memotong bujur sangkar identik pada keempat pojok dan melipat ke atas sisi-sisinya. Carilah ukuran kotak yang volumenya maksimum. Berapa volume kotak ?Pembahasan 1 : Andai x adalah sisi bujur sangkar yang harus dipotong dan v adalah volume kotak yang dihasilkan, maka :
x tidak dapat lebih kecil dari 0 ataupun lebih besar dari 4,5. sehingga masalahnya adalah memaksimumkan V pada [0 ; 4,5]. Titik stasioner ditemukan dengan menetapkan dan menyelesaikan persamaan yang dihasilkan.
memperoleh X = 2 atau X = 9, tetapi 9 tidak pada selang [0 ; 4,5] jadi titik kritis hanya terdapat di tiga titik yaitu 0 , 2 , dan 4,5.
pada ujung interval 0 dan 4,5 diperoleh V = 0, pada 2 diperoleh V = 200 sedemikian sehingga kotak mempunyai Volume maksimum 200 incikubik jika X = 2 yaitu apabila kotak berukuran panjang 20 inci, lebar 5 inci , dan tinggi 2 inci.
2. Menggambarkan suatu masalah yang dialami oleh sebuah perusahaan yang menyalurkan produknya menggunakan kendaraan (misal truk). Dengan bertambahnya kecepatan maka biaya operasional (untuk bahan bakar, pelumas dan lainnya) menjadi bertambah.Pembahasan 2 :
Biaya operasional sebuah kendaraan angkutan diperkirakan sekitar rupiah per kilometer saat dikemudikan dengan kecepatan V Km per jam. Pengemudinya dibayar 1400 rupiah per jam. Pada kecepatan berapakah biaya pengiriman ke suatu kota yang jauhnya k Km akan paling murah ? dengan anggapan bahwa aturan kecepatan yang diperbolehkan .
Misalkan C adalah biaya total dalam rupiah untuk menjalankan truk sejauh k Km.
C = biaya pengemudi + biaya operasi kendaraan
maka :
dengan mengambil
mendapatkan
artinya pada kecepatan 53 Km per jam adalah total pengeluaran biaya optimum. Tetapi untuk lebih meyakinkan , maka perlu meninjau total biaya (C) pada ketiga titiknya yaitu di v = 40, v = 53, dan v = 60. Caranya silakan substitusi satu persatu harga v ke persamaan